KOKLEAR İMPLANTLI BEBEK VE ÇOCUKLARDA SANTRAL İŞİTSEL SİSTEM MATURASYONUNUN İŞİTSEL P1 İNDEKSİ İLE DEĞERLENDİRİLMESİ

Asuman Alnıaçık, Gülin Gökçen Kesici

Özet


Özet

Amaç:  Bu derleme çalışmasının amacı koklear implant kullanan bebek ve çocuklardaki  işitsel deprivasyonun santral işitme sistemi üzerindeki etkilerini işitsel P1 indeksini kullanarak incelemektir.

Yöntem: Santral işitsel yolların normal gelişimini inceleyen çalışmalar, insanlarda ve hayvan modellerinde işitsel yoksunluğun ardından santral işitme yollarının gelişimini inceleyen çalışmalar, işitsel yoksunluğu takiben plastisite çalışmaları ve yoksunluğa bağlı kortikal yeniden yapılanma ile ilişkili olarak kortikal ayrışma çalışmaları özetlenmiştir.

Bulgular: Santral işitme sisteminin plastisitesi kritik dönem içinde maksimuma çıkmaktadır. İşitsel P1 indeksi bebek ve çocukların santral işitsel sistem maturasyonunu takip etmek açısından bir biyolojik- belirteç olarak kullanılabilir. 

Sonuç: Erken yaş döneminde implantlandırılan bebek ve çocukların santral işitme sistemi normal gelişim göstermektedir. Kritik dönem sonrası geç implante edilen bebek ve çocuklarda ise, işitsel deprivasyon kortikal yapılarda fonksiyonel ayrışma ve modaliteler arası yeniden yapılanmaya neden olabilmektedir. 

Anahtar Kelimeler: Plastisite; İşitsel Korteks; P1; N1; Kritik Dönem, Modaliteler Arası Yeniden Yapılanma

Abstract

Objectives: This review examines the effects of auditory deprivation on the central auditory system by the auditory P1 index in infants and children using cochlear implants.

Material and Methods: This study summarize the studies examining normal central auditory pathway development; analyses the studies related with the development of central auditory pathways following auditory deprivation in humans and animal models, and compile the cortical de-coupling studies related to plasticity and cortical re-organization  following auditory deprivation.

Results:  The neural plasticity of the central auditory system is maximized during the critical period. The auditory P1 index can be used as a biomarker to monitor the central auditory system maturation of infants and children.

Conclusion: The central hearing system of infants and children who are implanted at an early age shows normal development. Auditory deprivation may cause the cortical de-coupling and the cross-modal re-organization in infants and children fitted with cochlear implant at a late age after sensitive period.  

 

Key Words: Plasticity; Auditory Cortex; P1; N1; Sensitive Period, Cross-Modal Re-organization


Tam Metin:

PDF

Referanslar


Albrecht, R., Suchodoletz, W. V., & Uwer, R. (2000). The development of auditory evoked dipole source activity from childhood to adulthood. Clinical Neurophysiology, 111(12), 2268-2276.

Bauer, P. W., Sharma, A., Martin, K., & Dorman, M. (2006). Central auditory development in children with bilateral cochlear implants. Archives of Otolaryngology–Head & Neck Surgery, 132(10), 1133-1136.

Bavelier, D., & Neville, H. J. (2002). Cross-modal plasticity: where and how?. Nature Reviews Neuroscience, 3(6), 443-452.

Bischof, H. J. (2007). Behavioral and neuronal aspects of developmental sensitive periods. Neuro Report, 18(5), 461-465.

Bolz, J.,& Castellani, V. (1997). How do wiring molecules specify cortical connections?. Cell and Tissue Research, 290(2), 307-314.

Brown, D. K., Bowman, D. M., &Kimberley, B. P. (2000). The effects of maturation and stimulus parameters on the optimal f 2/f 1 ratio of the 2f 1− f 2 distortion product otoacoustic emission in neonates. Hearing Research, 145(1), 17-24.

Cooper, E. R. A. (1948). The development of the human auditory pathway from the cochlear ganglion to the medial geniculate body. Cells Tissues Organs, 5(1-2), 99-122.

Eggermont, J. J., Ponton, C. W., Coupland, S. G., &Winkelaar, R. (1991). Maturation of the traveling‐wave delay in the human cochlea. The Journal of the Acoustical Society of America, 90(1), 288-298.

Eggermont, J. J.,& Ponton, C. W. (2003). Auditory-evoked potential studies of cortical maturation in normal hearing and implanted children: correlations with changes in structure and speech perception. Acta Oto-Laryngologica, 123(2), 249-252.

Elliott, L. L. (1979). Performance of children aged 9 to 17 years on a test of speech intelligibility in noise using sentence material with controlled word predictability. The Journal of the Acoustical Society of America, 66(3), 651-653.

Elliott, G. B.,&Elliott, K. A. (1964). Some pathological, radiological and clinical implications of the precocious development of the human ear. The Laryngoscope, 74(8), 1160-1171.

Eisenberg, L. S., Shannon, R. V., Schaefer Martinez, A., Wygonski, J., & Boothroyd, A. (2000). Speech recognition with reduced spectralcues as a function of age. The Journal of the Acoustical Society of America, 107(5), 2704-2710.

Erwin, R. J., & Buchwald, J. S. (1986). Midlatency auditory evoked responses in the human and the cat model. Electroencephalography and Clinical Neurophysiology. Supplement, 40, 461-467.

Gilley, P. M., Sharma, A., Dorman, M., & Martin, K. (2005). Developmental changes in refractoriness of the cortical auditory evoked potential. Clinical Neurophysiology, 116(3), 648-657.

Gilley, P. M., Sharma, A., & Dorman, M. F. (2008). Cortical reorganization in children with cochlear implants. Brain Research, 1239, 56-65.

Granier-Deferre, C., Lecanuet, J. P., Cohen, H., & Busnel, M. C. (1985). Feasibility of prenatal hearing test. Acta Oto-Laryngologica, 99(sup421), 93-101.

Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387(2), 167-178.

Kilgard, M. P.,& Merzenich, M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science, 279(5357), 1714-1718.

Klinke, R.,Hartmann, R., Heid, S., Tillein, J., & Kral, A. (2001). Plastic changes in the auditory cortex of congenitally deaf cats following cochlear implantation. Audiology and Neurotology, 6(4), 203-206.

Kral, A., Hartmann, R., Tillein, J., Heid, S., & Klinke, R. (2000). Congenital auditory deprivation reduces synaptic activity within the auditory cortex in a layer-specific manner. Cerebral Cortex, 10(7), 714-726.

Kral, A., Hartmann, R., Tillein, J., Heid, S., & Klinke, R. (2002). Hearing after congenital deafness: central auditory plasticity and sensory deprivation. Cerebral Cortex, 12(8), 797-807.

Leake, P. A., Snyder, R. L., Hradek, G. T., & Rebscher, S. J. (1992). Chronic intracochlear electrical stimulation in neonatally deafened cats: effects of intensity and stimulating electrode location. Hearing Research, 64(1), 99-117.

Lebib, R., Papo, D., de Bode, S., & Baudonnière, P. M. (2003). Evidence of a visual-to-auditory cross-modal sensory gating phenomenon as reflected by the human P50 event-related brain potential modulation. Neuroscience Letters, 341(3), 185-188.

Lee, D. S., Lee, J. S., Oh, S. H., Kim, S. K., Kim, J. W., Chung, J. K., ... & Kim, C. S. (2001). Deafness: cross-modal plasticity and cochlear implants. Nature, 409(6817), 149-150.

Lee, H. J., Kang, E., Oh, S. H., Kang, H., Lee, D. S., Lee, M. C., & Kim, C. S. (2005). Preoperative differences of cerebral metabolism relate to the outcome of cochlear implants in congenitally deaf children. Hearing Research, 203(1), 2-9.

Röder, B., Stock, O., Bien, S., Neville, H., & Rösler, F. (2002). Speech processing activates visual cortex in congenitally blind humans. European Journal of Neuroscience, 16(5), 930-936.

Maurer, D., Lewis, T. L., Brent, H. P., & Levin, A. V. (1999). Rapid improvement in the acuity of infants after visual input. Science, 286(5437), 108-110.

McGee, T., & Kraus, N. (1996). Auditory development reflected by middle latency response. Ear and Hearing, 17(5), 419-429.

Moore, J. K.,& LinthicumJr, F. H. (2007). The human auditory system: a timeline of development. International Journal of Audiology, 46(9), 460-478.

Nordeen, K. W., Killackey, H. P., & Kitzes, L. M. (1983). Ascending projections to the inferior colliculus following unilateral cochlear ablation in the neonatal gerbil, Meriones unguiculatus. Journal of Comparative Neurology, 214(2), 144-153.

Pang, E. W., & Taylor, M. J. (2000). Tracking the development of the N1 from age 3 to adulthood: an examination of speech and non-speech stimuli. Clinical Neurophysiology, 111(3), 388-397.

Ponton, C. W., Don, M., Eggermont, J. J., Waring, M. D., & Masuda, A. (1996). Maturation of human cortical auditory function: differences between normal-hearing children and children with cochlear implants. Ear and Hearing, 17(5), 430-437.

Ponton, C. W.,Eggermont, J. J., Coupland, S. G., & Winkelaar, R. (1992). Frequency‐specific maturation of the eighth nerve and brain‐stem auditory pathway: Evidence from derived auditory brain‐stem responses (ABRs). The Journal of the Acoustical Society of America, 91(3), 1576-1586.

Ponton, C. W., Eggermont, J. J., Kwong, B., & Don, M. (2000). Maturation of human central auditory system activity: evidence from multi-channel evoked potentials. Clinical Neurophysiology, 111(2), 220-236.

Ponton, C. W., & Eggermont, J. J. (2001). Of kittens and kids: altered cortical maturation following profound deafness and cochlear implant use. Audiology and Neurotology, 6(6), 363-380.

Roland, P. S., Tobey, E. A., & Devous, M. D. (2001). Preoperative functional assessment of auditory cortex in adult cochlear implant users. The Laryngoscope, 111(1), 77-83.

Ryugo, D. K., Pongstaporn, T., Huchton, D. M., & Niparko, J. K. (1997). Ultrastructural analysis of primary endings in deaf white cats: morphologic alterations in endbulbs of Held. Journal of Comparative Neurology, 385(2), 230-244.

Ryugo, D. K., Rosenbaum, B. T., Kim, P. J., Niparko, J. K., & Saada, A. A. (1998). Single unit recordings in the auditory nerve of congenitally deaf white cats: morphological correlates in the cochlea and cochlear nucleus. The Journal of Comparative Neurology, 397(4), 532-548.

Sanes, J. R.,& Yamagata, M. (1999). Formation of lamina-specific synaptic connections. Current opinion in neurobiology, 9(1), 79-87.

Sharma, A., Kraus, N., McGee, T. J., & Nicol, T. G. (1997). Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 104(6), 540-545.

Sharma, A., Dorman, M. F., & Spahr, A. J. (2002). A sensitive period for the development of the central auditory system in children with cochlear implants: implications for age of implantation. Ear and Hearing, 23(6), 532-539.

Sharma, A., Dorman, M. F., & Kral, A. (2005). The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hearing Research, 203(1), 134-143.

Sharma, A., Gilley, P. M., Dorman, M. F., & Baldwin, R. (2007). Deprivation-induced cortical reorganization in children with cochlear implants. International Journal of Audiology, 46(9), 494-499.

Sharma, A., Nash, A. A., & Dorman, M. (2009). Cortical development, plasticity and re-organization in children with cochlear implants. Journal of communication disorders, 42(4), 272-279.

Sharma, A., Campbell, J., & Cardon, G. (2015). Developmental and cross-modal plasticity in deafness: Evidence from the P1 and N1 event related potentials in cochlear implanted children. International Journal of Psychophysiology, 95(2), 135-144.

Trehub, S. E. (1976). The discrimination of foreign speech contrasts by infants and adults. Child Development, 466-472.

Stevens, K. N.,& Lindblom, B. (1987). Linguistic experience alters phonetic perception in infants by 6 months of age. Cell, 49, 281.

Werker, J. F.,&Tees, R. C. (1984). Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behavior and Development, 7(1), 49-63.

Wunderlich, J. L., Cone-Wesson, B. K., & Shepherd, R. (2006). Maturation of the cortical auditory evoked potential in infants and young children. Hearing Research, 212(1), 185-202.

Zhang, L. I.,Bao, S., & Merzenich, M. M. (2001). Persistent and specific influences of early acoustic environments on primary auditory cortex. Nature Neuroscience, 4(11), 1123-1130.


Refback'ler

  • Şu halde refbacks yoktur.