GEÇMİŞTEN GÜNÜMÜZE KOKLEAR İMPLANT ELEKTROT DİZİN TASARIMLARI

Asuman Alnıaçık

Özet


Özet:

            Koklear implantasyon çok ileri derecede işitme kaybı bulunan kişilerde, işitme duyumunu iyileştirmek için kullanılan etkili bir tedavi yöntemidir. Ses işlemcisi ve iletici bobin dış parçalarını, alıcı ve koklear dukt içine yerleştirilen elektrot dizini iç parçalarını oluşturur. Nöral yapılara elektrik uyarımın ulaştığı son terminal olan elektrot kontak alanları, elektrot dizini içinde yer alır. Bu derleme yazısında koklear implant sisteminin genel tarihsel gelişiminin yanı sıra elektrot dizinleri tasarımlanırken anatomik-fizyolojik- psikoakustik-fizik bilgi ve kurallarına uygunluk açısından dikkat edilmesi gereken konular üzerinde durulmuştur.

           

Anahtar Kelimeler: İşitme, koklear implant, işitme kaybı                                                      

           

           

            Abstract:

            The cochlear implantation is an effective treatment for hearing impaired people with profound hearing loss to improve hearing. The external part consists of sound processor and transmitting coil, the reciever and the electrode array inserted into the cochlear duct form the internal part. The electrode contact areas, which are the last terminal for electrical stimulation to the neural structures, are located within the electrode array. In this review, the design of electrode arrays are emphasized in terms of important anatomical, physiological, psycho-acoustical and physical issues. 

 

Key Words:Hearing, cochlear implant, hearing loss  

 


Tam Metin:

PDF

Referanslar


Adunka, O., Unkelbach, M. H., Mack, M., Hambek, M., Gstoettner, W., & Kiefer, J. (2004). Cochlear implantation via the round window membrane minimizes trauma to cochlear structures: a histologically controlled insertion study. Acta oto-laryngologica, 124(7), 807-812.

Adunka, O. F., Dillon, M. T., Adunka, M. C., King, E. R., Pillsbury, H. C., & Buchman, C. A. 2014). Cochleostomy versus round window insertions: influence on functional outcomes in electric-acoustic stimulation of the auditory system. Otology & Neurotology, 35(4), 613-618.

American Speech-Language-Hearing Association. (2004). Cochlear implants [Technical Report]. Available from www.asha.org/policy.doi:10.1044/policy.TR2004-00041.

Aschendorff, A., Kromeier, J., Klenzner, T., & Laszig, R. (2007). Quality control after insertion of the nucleus contour and contour advance electrode in adults. Ear and hearing, 28(2), 75S-79S.

Bacciu, A., Pasanisi, E., Vincenti, V., Guida, M., Barbot, A., Berghenti, M., ... & Bacciu, S. (2004). Comparison of speech perception performance between the Nucleus 24 and Nucleus 24 Contour cochlear implant systems. Acta oto-laryngologica, 124(10), 1155- 1158.

Başkent, D., & Shannon, R. V. (2005). Interactions between cochlear implant electrode insertion depth and frequency-place mapping. The Journal of the Acoustical Society of America, 117(3), 1405-1416.

Bauer, P. W., & Roland, P. S. (2004). Clinical results with the Med‐El compressed and split arrays in the United States. The Laryngoscope, 114(3), 428-433.

Black, R. C., & Clark, G. M. (1980). Differential electrical excitation of the auditory nerve. The Journal of the Acoustical Society of America, 67(3), 868-874.

Bierer, J. A., & Middlebrooks, J. C. (2002). Auditory cortical images of cochlear-implant stimuli: dependence on electrode configuration. Journal of Neurophysiology, 87(1), 478-492.

Bilger, R. C., Black, F. O., Hopkinson, N. T., & Myers, E. N. (1977). Implanted auditory prosthesis: an evaluation of subjects presently fitted with cochlear implants. Transactions. Section on Otolaryngology. American Academy of Ophthalmology and Otolaryngology, 84(4 Pt 1), ORL.

Blamey, P., Artieres, F., Başkent, D., Bergeron, F., Beynon, A., Burke, E., ... & Govaerts, P. J. (2013). Factors affecting auditory performance of post linguistically deaf adults using cochlear implants: an update with 2251 patients. Audiology and Neurotology, 18(1), 36-47.

Boyd, P. J. (2011). Potential benefits from deeply inserted cochlear implant electrodes. Ear and hearing, 32(4), 411-427.

Boyle, P. J. (2016). The rationale for a mid-scala electrode array. European annals of otorhinolaryngology, head and neck diseases, 133, S61-S62.

Briggs, R. J., Tykocinski, M., Xu, J., Risi, F., Svehla, M., Cowan, R., ... & Lenarz, T. (2006). Comparison of round window and cochleostomy approaches with a prototype hearing preservation electrode. Audiology and Neurotology, 11(Suppl. 1), 42-48.

Briggs, R. J., Tykocinski, M., Lazsig, R., Aschendorff, A., Lenarz, T., Stöver, T., ... & Wright, C. G. (2011). Development and evaluation of the modiolar research array–multi-center collaborative study in human temporal bones. Cochlear implants international, 12(3), 129-139.

Chatterjee, M., Galvin, J. J., Fu, Q. J., & Shannon, R. V. (2006). Effects of stimulation mode, level and location on forward-masked excitation patterns in cochlear implant patients. Journal of the Association for Research in Otolaryngology, 7(1), 15-25.

Cochlear Limited, 2014. Cochlear Nucleus CI422 with Slim Straight [Online] Available at: http://www.cochlear.com

Cohen, L. T., Saunders, E., & Clark, G. M. (2001). Psychophysics of a prototype peri-modiolar cochlear implant electrode array. Hearing research, 155(1-2), 63-81.

Cooper, H., & Craddock, L. (2006). Cochlear implants: a practical guide. John Wiley & Sons.

Dhanasingh, A., & Jolly, C. (2017). An overview of cochlear implant electrode array designs. Hearing research, 356, 93-103.

Dhanasingh, A. (2018). Cochlear duct length along the outer wall vs organ of corti: Which one is relevant for the electrode array length selection and frequency mapping using Greenwood function?. World Journal of Otorhinolaryngology-Head and Neck Surgery.

Djourno, A., & Eyries, C. (1957). Auditory prosthesis by means of a distant electrical stimulation of the sensory nerve with the use of an in dwelt coiling. La Presse Médicale, 65(63), 1417-1417.

Eddington, D. K. (1980). Speech discrimination in deaf subjects with cochlear implants. The Journal of the Acoustical Society of America, 68(3), 885-891.

Eisen, M. D. (2009). The history of cochlear implants. Cochlear implants: Principles and practices, 89-93.

El Fata, F., James, C. J., Laborde, M. L., & Fraysse, B. (2009). How much residual hearing is ‘useful’ for music perception with cochlear implants?. Audiology and Neurotology, 14(Suppl. 1), 14-21.

Erixon, E., & Rask-Andersen, H. (2013). How to predict cochlear length before cochlear implantation surgery. Acta oto-laryngologica, 133(12), 1258-1265.

Escudé, B., James, C., Deguine, O., Cochard, N., Eter, E., &Fraysse, B. (2006). The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Audiology and Neurotology, 11(Suppl. 1), 27-33.

Eshraghi, A. A., Nazarian, R., Telischi, F. F., Rajguru, S. M., Truy, E., & Gupta, C. (2012). The cochlear implant: historical aspects and future prospects. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 295(11), 1967-1980.

Fujita, T., Shin, J. E., Cunnane, M., Fujita, K., Henein, S., Psaltis, D., & Stankovic, K. M. (2016). Surgical Anatomy of the Human Round Window Region: Implication for Cochlear Endoscopy through the External Auditory Canal. Otology & Neurotology, 37(8), 1189-1194.

Finley, C. C., & Skinner, M. W. (2008). Role of electrode placement as a contributor to variability in cochlear implant outcomes. Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 29(7), 920.

Fitzgerald, M. B., Shapiro, W. H., McDonald, P. D., Neuburger, H. S., Ashburn-Reed, S., Immerman, S., ... & Svirsky, M. A. (2007). The effect of perimodiolar placement on speech perception and frequency discrimination by cochlear implant users. Acta oto- laryngologica, 127(4), 378-383.

Fretz, R. J., & Fravel, R. P. (1985). Design and function: a physical and electrical description of the 3M House cochlear implant system. Ear and Hearing, 6(3 Suppl), 14S-19S.

Friedland, D. R., Runge-Samuelson, C., Baig, H., & Jensen, J. (2010). Case-control analysis of cochlear implant performance in elderly patients. Archives of Otolaryngology–Head & Neck Surgery, 136(5), 432-438.

Frisch, C. D., Carlson, M. L., Lane, J. I., & Driscoll, C. L. (2015). Evaluation of a new mid‐scala cochlear implant electrode using microcomputed tomography. The Laryngoscope, 125(12), 2778-2783.

Gani, M., Valentini, G., Sigrist, A., Kós, M. I., & Boëx, C. (2007). Implications of deep electrode insertion on cochlear implant fitting. Journal of the Association for Research in Otolaryngology, 8(1), 69-83.

Gantz, B. J., Mccabe, B. F., & Tyler, R. S. (1988). Use of multichannel cochlear implants in obstructed and obliterated cochleas. Otolaryngology—Head and Neck Surgery, 98(1), 72-81.

Garnham, C., O'driscoll, M., Ramsden, R., & Saeed, S. (2002). Speech understanding in noise with a Med-El COMBI 40+ cochlear implant using reduced channel sets. Ear and hearing, 23(6), 540-552.

Green, K. M., Bhatt, Y. M., Mawman, D. J., O'Driscoll, M. P., Saeed, S. R., Ramsden, R. T., & Green, M. W. (2007). Predictors of audiological outcome following cochlear implantation in adults. Cochlear Implants International, 8(1), 1-11.

Hardy, M. (1938). The length of the organ of Corti in man. American Journal of Anatomy, 62(2), 291-311.

Hassepass, F., Bulla, S., Maier, W., Laszig, R., Arndt, S., Beck, R., ... & Aschendorff, A. (2014). The new mid-scala electrode array: a radiologic and histologic study in human temporal bones. Otology & Neurotology, 35(8), 1415-1420.

Hochmair, E. S., & Hochmair‐Desoyer, I. J. (1983). Percepts elicited by different speech‐coding strategies. Annals of the New York Academy of sciences, 405(1), 268- 279.

Hochmair, I., Hochmair, E., Nopp, P., Waller, M., &Jolly, C. (2015). Deep electrode insertion and sound coding in cochlear implants. Hearing research, 322, 14-23.

Hughes, M. L., & Abbas, P. J. (2006). Electrophysiologic channel interaction, electrode pitch ranking, and behavioral threshold in straight versus perimodiolar cochlear implant electrode arrays. The Journal of the Acoustical Society of America, 119(3), 1538- 1547.

Irving, S., Gillespie, L., Richardson, R., Rowe, D., Fallon, J. B., & Wise, A. K. (2014). Electroacoustic stimulation: now and into the future. BioMed research international, 2014.

James, C. J., Fraysse, B., Deguine, O., Lenarz, T., Mawman, D., Ramos, Á., ... & Sterkers, O. (2006). Combined electroacoustic stimulation in conventional candidates for cochlear implantation. Audiology and Neurotology, 11(Suppl. 1), 57-62.

Kawano, A., Seldon, H. L., &Clark, G. M. (1996). Computer-aided three- dimensional reconstruction in human cochlear maps: measurement of the lengths of organ of Corti, outer wall, inner wall, and Rosenthal's canal. Annals of Otology, Rhinology & Laryngology, 105(9), 701-709.

Kiang, N. Y., & Moxon, E. C. (1972). Physiological considerations in artificial stimulation of the inner ear. Annals of Otology, Rhinology & Laryngology, 81(5), 714-730.

Kiefer, J., Hohl, S., Stürzebecher, E., Pfennigdorff, T., & Gstöettner, W. (2001). Comparison of Speech Recognition with Different Speech Coding Strategies (SPEAK, CIS, and ACE) and Their Relationship to Telemetric Measures of Compound Action Potentials in the Nucleus CI 24M Cochlear Implant System: Comparación del reconocimiento del lenguaje utilizando diferentes estrategias (SPEAK, CIS y ACE) y su relación con mediciones telemétricas de potenciales de acción compuestos, con el sistema de implante coclear nucleus CI24M. Audiology, 40(1), 32-42.

Koch, R. W., Ladak, H. M., Elfarnawany, M., &Agrawal, S. K. (2017). Measuring cochlear duct length–a historical analysis of methods and results. Journal of Otolaryngology-Head & Neck Surgery, 46(1), 19.

Kral, A., & Sharma, A. (2012). Developmental neuroplasticity after cochlear implantation. Trends in neurosciences, 35(2), 111-122.

Landsberger, D. M., Padilla, M., & Srinivasan, A. G. (2012). Reducing current spread using current focusing in cochlear implant users. Hearing research, 284(1-2), 16-24.

Lee, J., Nadol Jr, J. B., &Eddington, D. K. (2010). Depth of electrode insertion and postoperative performance in humans with cochlear implants: a histopathologic study. Audiology and Neurotology, 15(5), 323-331.

Mangus, B., Rivas, A., Tsai, B. S., Haynes, D. S., & Roland, J. T. (2012). Surgical techniques in cochlear implants. Otolaryngologic Clinics of North America, 45(1), 69-80.

Marsh, M. A., Xu, J., Blamey, P. J., Whitford, L. A., Xu, S. A., Silverman, J. M., & Clark, G. (1993). Radiologic evaluation of multichannel intracochlear implant insertion depth. Scientific publications, vol. 7, 1992-1993 no. 469.

MED-EL, 2014. Electrode arrays: designed for atraumatic implantation providing

superior hearing performance [Online] Available at: http://s3.medel.com/pdf/ 21617.pdf.

ME-DEL, 2019. https://www.medel.com/hearing-solutions/cochlear-implants.

Meng, J., Li, S., Zhang, F., Li, Q., &Qin, Z. (2016). Cochlear size and shape variability and implications in cochlear implantation surgery. Otology& Neurotology, 37(9), 1307-1313.

Morris, D. J., & Pfingst, B. E. (2000). Effects of electrode configuration and stimulus level on rate and level discrimination with cochlear implants. Journal of the Association for Research in Otolaryngology, 1(3), 211-223.

Müller, J., Schon, F., & Helms, J. (2002). Speech understanding in quiet and noise in bilateral users of the MED-EL COMBI 40/40+ cochlear implant system. Ear and hearing, 23(3), 198-206.

Pau, H. W., Just, T., Bornitz, M., Lasurashvilli, N., & Zahnert, T. (2007). Noise exposure of the inner ear during drilling a cochleostomy for cochlear implantation. The Laryngoscope, 117(3), 535-540.

Pelosi, S., Noble, J. H., Dawant, B. M., & Labadie, R. F. (2013). Analysis of inter-subject variations in intracochlear and middle ear surface anatomy for cochlear implantation. Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 34(9).

Pfingst, B. E., Zwolan, T. A., & Holloway, L. A. (1997). Effects of stimulus configuration on psychophysical operating levels and on speech recognition with cochlear implants. Hearing research, 112(1-2), 247-260.

Pfingst, B. E., Franck, K. H., Xu, L., Bauer, E. M., & Zwolan, T. A. (2001). Effects of electrode configuration and place of stimulation on speech perception with cochlear prostheses. JARO-Journal of the Association for Research in Otolaryngology, 2(2), 87-103.

Pfingst, B. E., Xu, L., & Thompson, C. S. (2004). Across-site threshold variation in cochlear implants: Relation to speech recognition. Audiology and Neurotology, 9(6), 341-352.

Roland, P. S., Wright, C. G., & Isaacson, B. (2007). Cochlear implant electrode insertion: the round window revisited. The Laryngoscope, 117(8), 1397-1402.

Roland Jr, J. T., Coelho, D. H., Pantelides, H., & Waltzman, S. B. (2008). Partial and double- array implantation of the ossified cochlea. Otology & Neurotology, 29(8), 1068-1075

Sharma, A., Gilley, P. M., Dorman, M. F., & Baldwin, R. (2007). Deprivation-induced cortical reorganization in children with cochlear implants. International journal of audiology, 46(9), 494-499.

Sennaroglu, L., & Saatci, I. (2002). A new classification for cochleovestibular malformations. The Laryngoscope, 112(12), 2230-2241.

Sennaroğlu, L., Atay, G., & Bajin, M. D. (2014). A new cochlear implant electrode with a “cork”-type stopper for inner ear malformations. Auris Nasus Larynx, 41(4), 331-336.

Souter, M. A., Briggs, R. J., Wright, C. G., & Roland, P. S. (2011). Round window insertion of precurved perimodiolar electrode arrays: how successful is it?. Otology & Neurotology, 32(1), 58-63.

Stevens, S. S. (1937). On hearing by electrical stimulation. The Journal of the Acoustical Society of America, 8(3), 191-195.

Svrakic, M., & Roland. T. J (2014). The History of Cochlear Implant Electrode Design Waltzman, S. B., & Roland, J. T. (Eds.). Cochlear implants. Thieme.108-117.

Tykocinski, M., Saunders, E., Cohen, L. T., Treaba, C., Briggs, R. J., Gibson, P., ... & Cowan, R. S. (2001). The contour electrode array: safety study and initial patient trials of a new perimodiolar design. Otology & neurotology, 22(1), 33-41.

Todt, I., Basta, D., & Ernst, A. (2008). Does the surgical approach in cochlear implantation influence the occurrence of postoperative vertigo?. Otolaryngology—Head and Neck Surgery, 138(1), 8-12.

Tyler, R. S., Abbas, P., Tye‐Murray, N., Gantz, B. J., Knutson, J. F., Mccabe, B. F., ... & Kuk, F. (1988). Evaluation of five different cochlear implant designs: audiologic assessment and predictors of performance. The Laryngoscope, 98(10), 1100-1106.

Van den Honert, C., & Stypulkowski, P. H. (1987). Single fiber mapping of spatial excitation patterns in the electrically stimulated auditory nerve. Hearing research, 29(2-3), 195- 206.

Venail, F.,Mathiolon, C., De Champfleur, S. M., Piron, J. P., Sicard, M., Villemus, F., ... & Uziel, A. (2015). Effects of electrode array length on frequency-place mismatch and speech perception with cochlear implants. Audiology and Neurotology, 20(2), 102-111.

Volta, A. (1982). Historical records documenting the first galvanic battery, “The Volta Column”. Circa 1800. Asimov’s Biographical Encyclopedia of Science and Technology.

Waltzman, S. B., & Roland, J. T. (Eds.). (2011). Cochlear implants. Thieme.

Wever, E. G., & Bray, C. W. (1930). The nature of acoustic response: The relation between sound frequency and frequency of impulses in the auditory nerve. Journal of experimental psychology, 13(5), 373.

Wilson, B. S., & Dorman, M. F. (2008). Cochlear implants: a remarkable past and a brilliant future. Hearing research, 242(1-2), 3-21.

Würfel, W., Lanfermann, H., Lenarz, T., & Majdani, O. (2014). Cochlear length determination using Cone Beam Computed Tomography in a clinical setting. Hearing Research, 316, 65-72.

Zeng, F. G., Rebscher, S. J., Fu, Q. J., Chen, H., Sun, X., Yin, L., ... & Yang, B. (2015). Development and evaluation of the Nurotron 26-electrode cochlear implant system. Hearing research, 322, 188-199.

Zwolan, T. A., Kileny, P. R., Ashbaugh, C., & Telian, S. A. (1996). Patient performance with the Cochlear Corporation" 20+ 2" implant: bipolar versus monopolar activation. The American journal of otology, 17(5), 717-723.


Refback'ler

  • Şu halde refbacks yoktur.