Beyin Bağırsak Aksının İştah Mekanizmasını Düzenleyen Hormonlar ve Nörotransmitterler Aracılığıyla Hedonik Açlık Üzerinde Etkisi

Büşra Bilgehan Cankar, Yasemin Beyhan

Özet


Beyin-bağırsak aksı; santral sinir sistemi (SSS), enterik sinir sistemi (ENS) ve bağırsak mikrobiyotası arasındaki çift yönlü iletişimi ifade eder. Bu iletişim nöro-endokrin faktörler (adrenal medulla ve korteksten üretilen), SSS, sempatik, parasempatik ve ESS’i kapsayan karmaşık bir ağ tarafından sağlanır. Beyin-bağırsak aksı ardındaki mekanizmalar hâlâ belirsizdir fakat beyin-bağırsak aksı arasındaki çift yönlü iletişim metabolizma homoeostazı, enerji dengesi, iştah regülasyonunun yanı sıra motivasyonel süreçler ve gıda ödül sinyalinin devreye girdiği hedonik beslenme davranışını da düzenlemektedir. Herhangi bir enerji ihtiyacı olmaksızın haz amacıyla sadece lezzetli besinlerin tüketiminin söz konusu olduğu beslenme davranışı ‘Hedonik Güdümlü Yeme Davranışı’ olarak tanımlanmaktadır. Hedonik beslenme davranışını etkileyen birçok faktör bulunmakla birlikte beyin-bağırsak aksının herhangi bir evresinde oluşabilecek düzensizlikler, normal koşullar altında gıda alımını düzenleyen faktörleri (mezolimbik dopaminerjik yolak, gastrointestinal ve adipoz doku hormonları, endokannabioid sistem) olumsuz etkileyerek hedonik güdümlü yeme davranışının artışına böylelikle aşırı yeme durumuna sebep olabilir. Bu derlemede beyin-bağırsak aksı ve hedonik açlık arasındaki ilişki incelenecektir.


Tam Metin:

PDF

Referanslar


Alhadeff, A.L., Rupprecht, L.E. ve Hayes, M.R. (2012). GLP-1 neurons in the nucleus of the solitary tract Project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology, 153(2), 647–58.

Berthoud, H.R. (2011). Metabolic and hedonic drives in the neural control of appetite: Who’s the boss?. Curr Opin Neurobiol, 21(6), 888–896.

Byrne, C.S., Chambers, E.S., Alhabeeb, H., China, N., Morrison, D.J., Preston, T., ... Frost, G.S. (2016). Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods. Am J Clin Nutr, 104, 5–14.

Chung, S., Hopf, F.W., Nagasaki, H., Li, C.Y., Belluzzi, J.D., Bonci, A., ve Civelli, O. (2009). The melanin-concentrating hormone system modulates cocaine reward. Proc Natl Acad Sci U S A, 106(16), 6772–7.

Coccurello, R. ve Maccarrone, M. (2018). Hedonic Eating and the “Delicious Circle”: From Lipid-Derived Mediators to Brain Dopamine and Back. Frontiers in Neuroscience, 12, 271

Cryan, J.F., O’Riordan, K.J., Cowan, C.S.M., Sandhu, K.V., Bastiaanssen, T.F.Z, Boehme M., ... Dinan, T. G. (2019) The Microbiota-gut-brain axis. Physiol Rev, 99, 1877–2013

Dossat, A.M., Lilly, N., Kay, K. ve Williams, D.L. (2011). Glucagon-like peptide 1 receptors in nucleus accumbens affect food intake. J Neurosci, 31(41), 14453–7.

Egecioglu, E., Jerlhag, E., Skibicka, S., Salomé, N., Haage, D., Bohlooly-YM, ... Sickson, S.L. (2010).Ghrelin increases intake of palatable food in rodents. Addict Biol, 15(3),304–11.

Egecioğlu, E., Skibicka, K.P., Hansson, C., Alvarez-Crespo, M., Friberg, P.A., Jerlhag, E., ... Dickson, S.L. (2011). Hedonic and incentive signals for body weight control. Rev Endocr Metab Disord, 12,141–151.

Figlewicz, D.P., Evans, S.B., Murphy, J., Hoen, M. ve Baskin, D.G. (2003). Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res, 964(1), 107–15.

Gupta, A., Osadchiy, V. ve Mayer, E.A. (2020) Brain–gut–microbiome interactions in obesity and food addiction. Gastroenerology&Hepatology, 17, 655-672

Hajnal, A., Acharya, N.K., Grigson, P.S., Covasa, M. ve Twining, R.C. (2007). Obese OLETF rats exhibit increased operant performance for palatable sucrose solutions and differential sensitivity to D2 receptor antagonism. Am J Physiol Regul Integr Comp Physiol, 93, 1846-1854.

Holzer, P. ve Farzi, A. (2014). Neuropeptides and the Microbiota-Gut-Brain Axis. Adv Exp Med Biol, 817, 195–219.

Kirchner, H., Gutierrez, J.A., Solenberg, P.J., Pfluger, P.T., Czyzyk, T.A., Willency, J.A. ve Tschöp, M.H. (2009). GOAT links dietary lipids with the endocrine control of energy balance. Nat. Med, 15 (7), 741–745.

Krugel, U., Schraft, T., Kittner, H., Kiess, W. ve Illes, P. (2003). Basal and feeding-evoked dopamine release in the rat nucleus accumbens is depressed by leptin. Eur J Pharmacol. 482(1-3), 185–7.

Lin, H.V., Frassetto, A., Kowalik, E.J., Nawocki, A.R., Lu, M.M., Kosinski, J.R., ... Marsh, D.J. (2012). Butyrate and propionate protect against diet- induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLOS ONE, 7, 35240.

Liu, J.J., Bello, N.T. ve Pang, Z.P. (2017). Pre-synaptic regulation of leptin in a defined lateral hypothalamus—ventral tegmental area neurocircuitry depends on energy state. J. Neurosci, 37, 11854–11866.

Monteleone, P., Piscitelli, F., Scognamiglio, P., Monteleone, A.M., Canestrelli, B., Marzo, V.V. ve Maj, M. (2012). Hedonic eating is associated with increased peripheral levels of ghrelin and the endocannabinoid 2-arachidonoyl-glycerol in healthy humans: A pilot study. J Clin Endocrinol Metab, 97(6), 917–924.

Monteleone, P., Scognamiglio, P., Monteleone, A.M., Perillo, D., Canestrelli, B. ve Maj M. (2013). Gastroenteric hormone responses to hedonic eating in healthy humans. Psychoneuroendocrinology, 38 1435—1441

Perry, R.J., Peng, L., Barry, N.A., Cline, G.W., Zhang, D., Cardone, R.L., ... Shulman, G.I. (2016). Acetate mediates a microbiomebrain- β-cell axis to promote metabolic syndrome. Nature, 534, 213–217.

Rui, L. (2013). Brain Regulation of energy balance and body weights. Rev Endocr Metab Disord, 14(4), 1-35

Strandwitz, P. (2018). Neurotransmitter modulation by the gut microbiota. Brain Res, 1693(Pt B), 128–133.

Torres-Fuentes, C., Schellekens, H., Dinan, T.G. ve Cryan, J.F. (2017). The microbiota–gut–brain axis in obesity. Lancet Gastroenterol Hepatol, 2, 747–56.

Volkow, N.D., Wang, G.J., Fowler, J.S. ve Telang, F. (2008). Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci, 363, 3191–3200.

Xiong, Y., Miyamoto, N., Shibata, K., Valasek, M.A., Motoike, T., Kedzierski, R.M. ve Yanagisawa, M. (2004). Short-chain fatty acids stimulate leptin production in adipocytes through the G proteincoupled receptor GPR41. Proc. Natl Acad. Sci. USA, 101, 1045–1050.

Yamanaka, A., Beuckmann, C.T., Willie, J.T., Hara, J., Tsujino, N., Mieda, M., ... Sakurai, T. (2003). Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron, 38, 701–713.

Zaibi, M.S., Stocker, C.J., O’Dowd, J., Davies, A., Bellahcene, M., Cawthorne, M.A., ... Arch, J.R.S. (2010). Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett, 584, 2381–2386.

Zhang, M. ve Kelley, A.E. (2002) Intake of saccharin, salt, and ethanol solutions is increased by infusion of a mu opioid agonist into the nucleus accumbens. Psychopharmacology, 159(4), 415–23.

Zhang, M., Gosnell, B.A. ve Kelley, A.E. (1998). Intake of high-fat food is selectively enhanced by mu opioid receptor stimulation within the nucleus accumbens. J Pharmacol Exp Ther, 285(2), 908–14.


Refback'ler

  • Şu halde refbacks yoktur.